AQP4-Dependent Water Transport Plays a Functional Role in Exercise-Induced Skeletal Muscle Adaptations
نویسندگان
چکیده
In this study we assess the functional role of Aquaporin-4 (AQP4) in the skeletal muscle by analyzing whether physical activity modulates AQP4 expression and whether the absence of AQP4 has an effect on osmotic behavior, muscle contractile properties, and physical activity. To this purpose, rats and mice were trained on the treadmill for 10 (D10) and 30 (D30) days and tested with exercise to exhaustion, and muscles were used for immunoblotting, RT-PCR, and fiber-type distribution analysis. Taking advantage of the AQP4 KO murine model, functional analysis of AQP4 was performed on dissected muscle fibers and sarcolemma vesicles. Moreover, WT and AQP4 KO mice were subjected to both voluntary and forced activity. Rat fast-twitch muscles showed a twofold increase in AQP4 protein in D10 and D30 rats compared to sedentary rats. Such increase positively correlated with the animal performance, since highest level of AQP4 protein was found in high runner rats. Interestingly, no shift in muscle fiber composition nor an increase in AQP4-positive fibers was found. Furthermore, no changes in AQP4 mRNA after exercise were detected, suggesting that post-translational events are likely to be responsible for AQP4 modulation. Experiments performed on AQP4 KO mice revealed a strong impairment in osmotic responses as well as in forced and voluntary activities compared to WT mice, even though force development amplitude and contractile properties were unvaried. Our findings definitively demonstrate the physiological role of AQP4 in supporting muscle contractile activity and metabolic changes that occur in fast-twitch skeletal muscle during prolonged exercise.
منابع مشابه
Elevated Mitochondrial Oxidative Stress Impairs Metabolic Adaptations to Exercise in Skeletal Muscle
Mitochondrial oxidative stress is a complex phenomenon that is inherently tied to energy provision and is implicated in many metabolic disorders. Exercise training increases mitochondrial oxidative capacity in skeletal muscle yet it remains unclear if oxidative stress plays a role in regulating these adaptations. We demonstrate that the chronic elevation in mitochondrial oxidative stress presen...
متن کاملAquaporin-4 Protein Is Stably Maintained in the Hypertrophied Muscles by Functional Overload
Aquaporin-4 (AQP4) is a selective water channel that is located on the plasma membrane of myofibers in skeletal muscle and is bound to α1-syntrophin. It is considered that AQP4 is involved in the modulation of homeostasis in myofibers through the regulation of water transport and osmotic pressure. However, it remains unclear whether AQP4 expression is altered by skeletal muscle hypertrophy to m...
متن کاملبررسی تاثیر یک جلسه فعالیت مقاومتی بر بیان ژن های NT-4/5 و p75 در عضلات سریع و آهسته موش های صحرایی
Background and purpose: Activity-dependent expression of neurotrophins in skeletal muscle is not well established. In this research we aimed at studying the effect of one session resistance exercise on mRNA expression of NT4.5 and P75 proteins in slow and fast skeletal muscles of Wistar rats. Materials and methods: Sixteen male Wistar rats (10 wk of age) were housed at room temperature under a...
متن کاملPGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.
Endurance exercise stimulates peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) expression in skeletal muscle, and forced expression of PGC-1alpha changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1alpha is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we s...
متن کاملThe Response of Skeletal Muscle-Expressed Neurotrophins to Acute Resistance Exercise in Male Wistar Rats
Background. BDNF and NT-4/5 have been proposed to be involved in the coordinated adaptations of the neuromuscular system to the elevated level of activity, but an activity-dependent expression of neurotrophins in skeletal muscle is not well established. Objectives. We, therefore, investigated the effect of one session of resistance exercise on mRNA expression of some neurotrophins in Slow and ...
متن کامل